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Abstract

Previous branch prediction studies have relied primarily upon
the SPECint89 and SPECint92 benchmarks for evaluation. Most of
these benchmarks exercise a very small amount of code. As a con-
sequence, the resources required by these schemes for accurate
predictions of larger programs have not been clear. Moreover,
many of these studies have simulated a very limited number of con-
Sfigurations. Here we report on simulations of a variety of branch
prediction schemes using a set of relatively large benchmark pro-
grams that we believe to be more representative of likely system
workloads. We have examined the sensitivity of these prediction
schemes to variation in workload, in resources, and in design and
configuration. We show that for predictors with small available
resources, aliasing between distinct branches can have the domi-
nant influence on prediction accuracy. For global history based
schemes, such as GAs and gshare, aliasing in the predictor table
can eliminate any advantage gained through inter branch correla-
tion. For self-history based prediction scheme, such as PAs, it is
aliasing in the buffer recording branch history, rather than the pre-
dictor table, that poses problems. Past studies have sometimes
confused these effects and allocated resources incorrectly.

1 Introduction

The importance of accurate branch prediction to future proces-
sors has been widely noted. The correct prediction of conditional
branch outcomes allows pipeline bubbles and the attendant losses
in performance to be avoided. On deeply pipelined processors and
processors seeking to obtain considerable instruction-level paral-
lelism the effect on performance can be substantial. In the early
1980’s it was shown that for many programs, a set of two-bit satu-
rating counters, indexed by branch address, could give good pre-
dictions [Smith81, Lee84]. In recent years, as the number of
transistors available for implementing more elaborate predictors
has increased, interest in the design of branch prediction hardware
has intensified. Many of the recent designs have sought to exploit
information from multiple distinct branches in the prediction of
each new branch instance. These have been termed correlating
branch predictors or two-level branch predictors.

While a burst of activity has brought forth many new ideas and
designs, much of the work proposing and evaluating new branch
predictor designs has explored only a small number of sizes and
configurations. As a consequence, it is difficult to assess the signif-
icance of many of the performance differences reported. More-
over, the set of benchmark programs typically used, the SPECint92
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benchmark suite, is weighted toward very small programs. The
program size can, in fact, have a strong influence on the perfor-
mance of many two-level schemes, but this influence is rarely con-
sidered directly.

As branch predictors based upon these ideas find their way into
products [MicroReport95a, MicroReport95b], it is important that
architects understand the likely behavior of their designs for real
applications. In this study we survey a variety of branch prediction
schemes, showing their sensitivity to variations in resources allo-
cated, design, and workload. Together, these results clarify the
relationship between several existing schemes, presenting a “big
picture” view of the design space for two-level branch predictors.
This big picture helps to put into context some of the results that
have been reported in recent studies that have included only a
small number of design variations.

We have found that for programs executing large numbers of
branches, the number of branches exercised has greater influence
on overall prediction rates than the semantics of the program or of
individual branches. This is not the case with the SPECint92
benchmarks, in which a small number of branches are exercised an
enormous number of times. In these programs, the handling of a
small set of cases can result in tremendous changes in prediction
rates. For large programs, performance is dependent primarily
upon handling the most frequent cases well. A consequence is that
branch predictor designs that begin by reasoning from individual
program constructs may handle a particular case better, but may
still make no appreciable difference to the overall prediction rate.
Designs emerging from measurements of large programs are likely
to allocate resources more effectively and to improve overall sys-
tem performance to a greater degree.

2 Benchmarks

We conducted this study through simulation driven by traces
gathered for the six SPECint92 benchmarks [SPEC92] and the
eight IBS-Ultrix benchmarksfUhlig9S] (see Table 1). The
SPECint92 programs were compiled for a MIPS R2000-based
workstation with the Ultrix MIPS C compiler version 2.1, using
the -O2 optimization flag and were traced while executing their
largest inputs. The resulting traces include only code executed at
the user level. The IBS-Ultrix benchmarks are a set of traces of
applications running under Ultrix 3.1, collected through hardware
monitoring of a MIPS R2000-based workstation. These traces
include both instructions executed at the user level and at the ker-
nel level, as well as instructions executed by auxiliary processes
such as the X server.

Considered statically, the SPECint92 benchmarks seem like a
reasonable set of programs with which to study branch prediction.
All contain a fairly large number of conditional branch instruc-
tions, with three containing over a thousand. When the dynamic
frequency of these branches is considered, however, potential
problems with the benchmarks appear. In five out of the six bench-

22



Dynamic # of Static Branches
Conditional Static Constituting 90% of Total
Dynamic Branches (Percentof | Conditional Dynamic Conditional
Benchmarks Instructions Total Instructions) Branches Branches

compress 83,947,354 11,739,532 (14.0%) 236 13
aqntott 1,395,165,044 342,595,193 (24.6%) 494 5
espresso 521,130,798 76,466,489 (14.7%) 1784 110
gce 142,359,130 21,579,307 (15.2%) 9531 2020
xiisp 1,307,000,716 147,425,333 (11.3%) 489 48
SC 889,057,008 150,381,340 (16.9%) 1269 157
groff 104,943,750 11,901,481 (11.3%) 6333 459
gs 118,090,975 16,308,247 (13.8%) 12852 1160
mpeg_play 99,430,055 9,666,290 (9.6%) 5598 532
nrott 130,249,374 22,574,884 (17.3%) 5249 228
real_gcc 107,374,368 14,309,867 (13.3%) 17361 3214
sdet 42,051,812 5,514,439 (13.1%) 5310 508
veritog 47,055,243 6,212,381 (13.2%) 4636 850
video_play 52,508,059 5,759,231 (11.0%) 4606 757

Table 1: Characterization of the SPECint92 and IBS-Ultrix benchmarks

Number of static conditional branches constituting the given portion of
the dynamic instances
Benchmarks first 50% next 40% next 9% remaining 1%
e5presso 12 (1.0%) 93 (5.2%) 208 (16.7%) 1,376 (77.1%)
mpeg_play 64 (1.1%) 468 (8.4%) 1,372 (24.5%) 3,694 (65.8%)
real_gcc 327 (1.9%) 2,877 (16.6%) 8,398 (48.4%) 5,749 (33.1%)

Table 2: Branch execution frequency for three benchmarks

marks, a small number of distinct branches contribute the over-
whelming majority of the branch instances. Only gcc exercises a
substantial number of branches. The small number of branches is
related to the small instruction cache footprints for these programs
that, previous studies have shown, render them unsuitable for eval-
uating the instruction caches for today’s processors [Gee93,
Uhlig95].

The IBS-Ultrix benchmarks all exercise substantially more
branches than the five small-footptint SPECint92 benchmarks.
The benchmarks include a run of the GNU C compiler, real_gcc,
which, though run on different inputs than the SPECint92 gcc
benchmark, is quite comparable to the latter. The remaining pro-
grams are somewhat smaller than either version of gcc. It is
important to note that the inclusion of operating system references
does not strongly affect the predictability of branches in these pro-
grams, aside from the consequences of trying to predict a greater
number of branches. The operating system code branch behavior
falls within the range covered by the IBS application programs.

A higher number of branches does not necessarily lead directly
to greater difficulties for predictors. A large proportion of the
branches, both for the applications and for the operating system,
are very highly biased; they are either almost always or almost
never taken, These branches include loops, error and bounds
checking, and other routine conditionals. Other studies have noted

the frequency of highly biased branches in the SPECint92 bench-
marks and similar programs and remarked upon their importance
in  achieving  high  accuracy [FisherFreudenberger92,
ChangHaoYehPatt94, YoungGloySmith5]. SPECint92’s gcc and
the IBS-ultrix benchmarks execute, proportionally, even more
instances of these highly biased branches. A possible consequence
of this is that the small-footprint SPECint92 programs may benefit
more from prediction mechanisms designed for less biased
branches than do larger programs with branches that are more
numerous, but also more easily predicted.

In this study we use the misprediction rate for conditional
branches as the figure of merit. Changes in misprediction rate do
not translate directly into changes in performance. The perfor-
mance penalty associated with branches will depend, among other
factors, upon the density of branches within code, the instruction-
level parallelism available and exploited, the depth of pipelines,
and the availability or lack of availability of the branch target
instruction. A number of studies have made careful assessment of
the link between changes in the misprediction rate and changes in
performance[McFarlingHennessyg6, FisherFreudenberger92,
YehPatt92b, CalderGrunwald94, CalderGrunwaldEmer95]. We
restrict ourselves in this study to an assessment of the systematic
variation in the misprediction rate.
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Figure 1:The general model of two-level dynamic
branch prediction

Due to space limitations, we focus here on results for three
benchmarks: SPECint92’s espresso and IBS-Ultrix’s mpeg_play
and real_gcc. Full results for all of the benchmarks are available
as a technical report [SechrestLeeMudge96]. The benchmarks on
which we focus represent a range of program sizes. Espresso is a
Boolean logic minimizer used in the generation of PLAs, the
mpeg_play trace records the software decompression and display
of a short video-clip, and real_gcc records a run of the GNU C
compiler. In all of these benchmarks, half of the conditional
branch instructions executed arise from less than two percent of
the distinct conditional branch instructions, and in all cases a large
number of branches are executed quite infrequently (see Table 2).
The IBS-Ultrix benchmarks, however, are larger and spread the
remaining half of the conditional branch instructions executed
among a larger portion of the distinct conditional branch instruc-
tions.

3 Two-Level Predictors

Figure 1 shows a general model of a two-level predictor. The
second level of such a predictor is generally a table of state
machines, such as two-bit saturating counters. To make a predic-
tion, one state machine is selected by row and column; the state of
this machine determines the prediction, while the actual branch
outcome determines the selected machine’s next state. The col-
umn is selected using the branch address, while the row is selected
by additional hardware. This hardware constitutes the first level
of the predictor. This row-selection box generally chooses a row
as a function of the branch address being predicted and the out-
come of previous branches. It may keep separate history buffers
for some number of branch addresses or it may use a single global
history buffer.

Absent the limitations of area and access time, we might build
a two-level predictor with a very large table of counters as predic-
tors. Each distinct conditional branch address would be given a
separate column in the table, with the rows representing condi-
tions under which that branch’s outcome is likely to vary. For
example, separate state machines might be kept for the various
combinations of outcomes of past executions of the branch, or the
outcomes of correlated branches. It would be the responsibility of
the row-selection box to record this history and from it to deter-
mine the appropriate row for each branch instance. The cost of
the row-selection box could vary considerably, depending upon
the selection scheme that we chose to implement.

Real predictors must, of course, make due with more limited
resources. It is therefore necessary to determine a cost-effective
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combination of row-selection strategy and predictor table organi-
zation. Many possibilities have been suggested. Yeh and Patt
[YehPatt92a] introduced a taxonomy for such two-level schemes,
coding them with three letters. In the context of the model shown
in Figure 1, the first letter states whether the row selection is based
upon history kept globally (G), kept for a set of addresses (S), or
kept for individual addresses (P). The second letter indicates the
predictor table contains either an adaptive state machine, such as a
two-bit saturating counter (A), or a fixed prediction (S). The third
letter indicates whether the table has a single column used for all
addresses (g), a set of columns indexed by bits extracted from the
address (s), or a separate column for every address (p).

To reduce the cost of a predictor, it is generally necessary to
make do with a smaller table than might give ideal results. An
ideal table would be limited only by the necessity that the benefit
of adding additional rows or columns must exceed the cost of
training the additional state machines. Benefit derives from distin-
guishing between two cases that are likely to have different out-
comes. With two-bit counters, the training cost of an individual
counter is quite small, but if the row indexing scheme requires that
the number of rows be doubled for every additional case consid-
ered, the limit for cost-effective subcasing will be reached fairly
quickly. In a real table, where there is a real time or space penalty
for every additional case considered, the cost-effective limit is
reached even quicker. In this case, rows that are distinguishable
and might serve to improve prediction accuracy must be merged.
Similarly, while an ideal table would maintain a separate column
for each branch whose executions reached some threshold, a real
table must make do with a smaller number in which multiple
branches will end up mapped to the same column. This column
aliasing can be harmless if the behavior of the branches for the
different subcases represented by rows is the same. If columns
representing branches with dissimilar behaviors are combined, the
cost will depend upon the extent of the dissimilarity and the
dynamic frequency of the subcases for which they differ.

For a fixed number of state machines there are a variety of pos-
sible predictor table configurations. One extreme is to merge
together all the subcases for a given branch and simply use the
branch address to select a state machine from a single row. We
will call this an address-indexed predictor. At the other extreme,
one can reduce the table to single column. The selection of a pre-
dictor then depends upon the behavior of the row-selection box.
One strategy is to use the outcome of the last n branches executed
as an index into a column of 2" state machines. Yeh and Patt
encode this as a GAg scheme. An alternative is to keep a separate
n-bit branch outcome register for every branch encountered, and
to use the appropriate register to index into the column of state
machines. Yeh and Patt encode this as PAg.

Figure 2 shows the misprediction rates for the SPECint92 and
IBS-Ultrix benchmarks using address-indexed prediction tables of
various sizes. The rate is plotted as a function of the number of
address bits used to index the counters, with the gray or white tier
for address length n represents the misprediction rate with 2" two-
bit counters in the row. The figure shows the accuracy using rows
ranging from 16 counters in the rear to 32,768 counters in front.
Because of the small number of branches exercised by the five
small SPECint92 programs, all but the smallest of tables assign a
separate column to each frequently executed branch, and no addi-
tional improvement can be found by increasing the table size. For
gee and the IBS-Ultrix benchmarks, on the other hand, some
degree of aliasing occurs even for the largest tables. Aliasing con-
flicts between branches occur when consecutive branch instances
accessing a particular counter arise from distinct branches. These
conflicts correspond to the conflicts in a direct mapped cache. For
mpeg_play, 6.24% of the accesses in a 1024-entry address-
indexed table conflict. For a 8,192-entry table, the aliasing rate is
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Figure 3: Misprediction rates using a column of two-bit counters: GAg

0.80%. For real_gcc the corresponding rates are 8.40% and
1.59%. For small tables, the IBS-Ultrix benchmark sdet bears
some resemblance to the small SPECint92 programs, in that only
8 distinct branches account for 50% of its dynamic instances.
However, since the remaining 50% of the dynamic instance are
spread over a large number of branches, it does not saturate even
large tables.

Figure 3 shows the misprediction rates for the benchmarks
using a GAg scheme. The misprediction rates for a column of 16
two-bit counters is shown by the rear tier and the misprediction
rates for 32,768 counters by the front tier. Using the global history
to select from a column of counters proves to be an effective
branch prediction strategy. As McFarling points out
[McFarling92], many global history patterns occur only in concert
with specific branches. Moreover, several patterns may be associ-
ated with each branch, providing the potential for discovering cor-
relation between prior branches and the branch under
consideration. For a sufficiently long column, all of these sub-
cases can be given separate counters. For shorter columns, these
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patterns will be merged with one another, yielding a shorter pat-
tern associated with two or more branches, or a history too short
to include the branch most highly correlated with the outcome of
the branch under consideration. With fewer branches, the small
SPECint92 benchmarks suffer less aliasing under GAg than do the
larger programs and, thus, have better accuracy for shorter histo-
ries. It should be noted that the aliasing for GAg is not always
harmful. Approximately a fifth of the aliasing for the larger
benchmarks was for the pattern with all recorded branches taken.
This corresponds to repeated execution of a tight loop. The
behavior of all such loops is identical, so all occurrences of the
all-ones pattern, without regard to the branch under consideration,
could, without harm, be aliased to a single counter.



4 Prediction Schemes Using Global
History

The address-indexed and GAg schemes are only the extreme
points of a range of predictor table configurations. GAs schemes
generalize the GAg scheme by allowing the address to be used to
select one of a set column, while using the global history to select
the row. One can arrange 2" state machines in n+1 configurations
of 2° columns and 2° rows, where c+r = n. At the extremes, the
configuration with 2" rows is identical to the GAg scheme just
described, while the configuration with 2" columns is identical to
the address-indexed schemes.

We can view the performance of the various GAs schemes as
forming a surface interpolating between the performance curves
for the address-indexed and the GAg schemes given in Figures 2
and 3. Surfaces for the benchmarks espresso, mpeg_play, and real-
gee are shown in Figure 4. Each gray or white tier represents a
constant number of two-bit counters, ranging from 16 for the rear-
most to 32,768 for the frontmost. Each tier ranges from the
address-index configuration on the left to the GAg configuration
on the right. Within each tier, we have blackened the top and sides
of the bar representing the configuration with the best perfor-
mance.

The distinction between the shape of the GAs performance sur-
face for espresso and those for mpeg_play and real_gcc is strik-
ing. Furthermore, the shapes for all of the IBS-ultrix benchmarks
are variants of this shape, while the small SPECint92 benchmarks
are similar to that for espresso. The primary determinant of the
shapes of these surfaces is the number of distinct branches exer-
cised and the aliasing conflicts that result. This can be seen from
Figure 5. The blackened bars represent the same best-in-tier con-
figurations shown in Figure 4. The number of branches in espresso
is so small that for moderate size tables it is possible to devote
several counters to each branch. Under these circumstances, very
little aliasing occurs provided even a few address bits are used.
Aliasing will occur, even in large tables, if one combines global
history with only a bit or two of address. This aliasing, however, is
mostly the harmless aliasing that occurs for all-ones patterns in
loops. For mpeg_play and real_gcc, in contrast, a good deal of
aliasing occurs even in moderate size tables. Doubling the number
of rows in the table, at the expense of halving the number of col-
umns, will increase aliasing, since the global history is less useful
at distinguishing between branches than are the branch addresses
themselves. Since a high proportion of the branches are strongly
biased, the penalty for any additional aliasing is so severe that it
far outweighs any possible benefit from using history bits to
assign instances to subcases within a colurnn. Thus, the best per-
formance available for small to moderately-sized tables comes
from the simple address-indexed scheme. For larger tables, how-
ever, aliasing will be low as long as sufficient address bits are
used. For these tables, dividing a column into additional rows can
pay off up to a point.

The tilt towards small programs of the SPECint92 benchmark
suite, and of the SPECint89 benchmarks before it, have skewed
the understanding of the performance of glabal history schemes in
two ways. First, the relatively low bias of the active branches for
the small programs, particularly for eqntott and compress, tends to
overstate the benefits of associating multiple state machines with
individual branches. Second, the harmful effects of aliasing
between branches are demonstrated by only a single program,
gee. The effect of second-level table size and configuration on
prediction accuracy has been investigated using SPEC bench-
marks by Pan, So and Rahmeh [PanSoRahmeh92], in their origi-
nal work on correlating predictors, by Yeh and Patt [YehPatt91,
YehPatt93], and, more recently, by Talcott, Nemirovsky and
Wood[TalcottNemirovskyWood95]. The results presented by Pan
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et al. for a number of configurations predicting li, and by Yeh and
Patt [YehPatt93], for an average of four of the benchmarks, are
quite similar to those shown in Figure 4 for espresso. Talcott ef al.
present results for a mixed of integer and floating point SPEC
benchmarks. They report the results for each benchmark for the
eleven possible configurations of a table of 1024 state machines,
but, in a sense, the gce results are outvoted by the remaining
benchmarks six to one. Yeh [Yeh93], in simulations of two spe-
cific table configurations, and Talcott e al., in a study of eleven
configurations, considered the effects of aliasing directly. While,
these studies, as well as others, note that the prediction accuracy
for gee is limited by aliasing in the predictor table, the inference
that gcc’s behavior is likely to be representative of a wide range of
applications is not drawn.

McFarling[McFarling92] proposed a variant to the GAs
scheme just described, called gshare, in which the global history
is exclusively ORed with bits from the branch addresses. His rea-
soning was that he could produce a row selector that would com-
bine the information of the global history and address bits. He
reasoned that in sufficiently large tables this would reduce aliasing
between the global history patterns while retaining the advantages
of using long global history to discover branch correlation. Since
global history patterns are only weakly identified with particular
branches, a short pattern might not be associated exclusively with
one of two branches aliased to a particular column. By XORing
the pattern with each of the addresses, one can produce two new
patterns, each associated with a distinct branch. As in GAs, addi-
tional address bits can be used to select one of several columns.
Hence, for a fixed table size there is a range of gshare configura-
tions. McFarling compared the best performance for a given size
predictor table of any GAs configuration with the best perfor-
mance for any gshare configuration and found a slight advantage
for the gshare schemes on the SPECint92 benchmarks. We should
note in passing that many subsequent studies of gshare have been
limited to configurations with a single column.

Figure 6 shows the results of simulations of gshare for the
three example benchmarks. We see that the results are almost
identical to those for GAs. Note that the leftmost configurations
within each tier are for address-indexed prediction and are thus
exactly the same as the leftmost configurations in Figure 4. As
before, the blackened bars represent the best accuracy within a
constant-size tier. Note that for small benchmarks, such as
espresso, single-column configurations, which in many studies are
the only gshare configurations evaluated, perform well. For large
benchmarks, however, such configurations are suboptimal.

Figure 7 shows the difference for the mpeg_play benchmark
between the GAs and gshare schemes for identically configured
predictor tables. Positive numbers indicate superior prediction by
gshare. We see that the differences are quite small. The areas of
superior performance are clustered on the right side of the graph,
where the table has more rows than columns. It is here that alias-
ing is highest, since global history patterns are less effective at
distinguishing branches than are address bits. However, as we
have pointed out, not all of this aliasing is destructive, so gshare
achieves some of its reduction in aliasing by eliminating harmless
aliasing. These configurations are, in fact, suboptimal for both
GAs and gshare, so improving their performance is not meaning-
ful. In the area towards the center of the graph, where GAs
schemes achieve their best performance, GAs and gshare differ
little in performance, although gshare does slightly expand this
number of these configurations.

Another variant of GAs has been proposed by Nair[Nair95].
Rather than selecting a row by maintaining a history of branch
outcomes, Nair proposes that these outcomes be encoded by stor-
ing a small number of bits from the addresses of branch targets.
Nair reasons that this could reduce aliasing between history pat-
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Figure 6: Misprediction rates for gshare schemes
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Figure 7: Differences in misprediction rates between
gshare and GAs for mpeg_play
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Figure 8: Differences in misprediction rates between
path and GAs for mpeg_play

terns, allowing separate predictors to be used for distinct paths to a
particular branch. Note that row merger can cause both the failure
to distinguish between patterns associated with different branches
and failure to distinguish between patterns associated with two
behaviors of the same branch.-McFarling attacked the first, while
Nair attacks the second. Nair reports the results of simulations of a
single configuration of his scheme (a 26 x 2% table) and a single
configuration of GAs (a 27 x 23 table). He found little difference
between the two configurations simulated for the SPECint92
benchmarks and an additional program. Nair did report that for
gcec and his additional program, both simulated configurations
were inferior to an address-indexed table of equivalent size, while
for the small-footprint SPECint92 programs both schemes were
superior. Note that the GAs configuration studied is one for which
GAs suffers from aliasing for programs with large numbers of
branches, hurting its performance relative to simple address index-
ing.
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the GAS and Nair’s path scheme for the mpeg_play benchmark.
As in Figure 7, positive numbers indicate superior prediction by
the path based prediction scheme. The results of simulations of
Nair’s path encoding show that, as with gshare, the path scheme
reduces aliasing for configurations with very few columns. Again,
these are not the configurations for which GAs performs the best.
For configurations with equal rows and columns or with more
rows than columns, Nair’s path encoding generally does slightly
worse than GAs. Nair points out the weakness of his scheme that
is the likely culprit. By using more than one bit to encode the out-
come of a single event, he has limited the number of events that
can be encoded in a given set of bits. Nair suggests that with
alternative path codings using hashing, his scheme is likely to
consistently outperform the GAs scheme, but simulations by
Young, Gloy and Smith [YoungGloySmith95] suggest other-
wise. Young et al. demonstrate the destructive effects of aliasing
for GAs and gshare schemes for a single configuration and sug-
gest that the way to better dynamic prediction schemes is to try to
exploit the same pattern and address information as gshare, while
avoiding destructive aliasing.

5 Prediction Schemes Using Per-Address
History

GAs schemes are primarily effective when the predictor table
is large enough to allocate several counters for every active
branch. This may appear as a large number of columns selected by
address or as a large number of rows selected by global patterns
associated with particular branches. Aliasing is limited in the first
case by ensuring that the number of columns is sufficient to han-
dle all of the active branches and in the second by making only
sparse use of rows.

Predictor tables could be made smaller without sacrificing
accuracy if the additional aliasing that resulted was relatively
harmless. This would be the case if the rows or columns to be
combined were close on an entry-by-entry basis. The meaning
and meaningfulness of any particular global history pattern varies
greatly from branch to branch, since it reflects the outcome of a
variety of branches, often including previous instances of the
branch now to be predicted. Thus, the columns of the predictor
table for global history schemes tend to be quite distinct. Self his-
tory patterns, on the other hand, often indicate a pattern of behav-
ior whose meaning is independent of the particular branch. The
appropriate predictions for the most frequently occurring patterns
are strongly correlated across branches [SechrestLeeMudge95].

PAs schemes can take advantage of this strong correlation. In
these schemes the row-selection box maintains history buffers for
individual branches. Relying on per-address information makes
the most frequently selected rows close to uniform across col-
umns. The predominance of these patterns is so strong that pro-
vided that enough self-history bits are used to distinguish among
the patterns, very little is lost by collapsing all columns into a sin-
gle row. Figure 9 shows the misprediction rates for various PAs
schemes, with the assumption that accurate history information is
available for each branch. Note that for any given table size, the
configuration with a single column is optimal or close to optimal.
These surfaces are relatively flat, however, so little is lost by sub-
stituting address bits for history bits, so long as at least a few his-
tory bits are retained. Furthermore, increasing the size of this
table adds little to the predictor’s accuracy. For mpeg_play, the
difference between the misprediction rate using 16 counters and
the rate using 1024 is only 1.9%, and between 1024 counters and
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various first-level tables for mpeg_play
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32,768 only 1.0%. For real_gcc the corresponding differences are
1.9% and 0.7%.

Accurate prediction is possible from a small second-level table
if accurate history information is available. Realistic implementa-
tions of PAs schemes will store branch histories in a first-level
table of some bounded size. Conflicts between branches can
result in the pollution of the stored history information. The con-
flict rates in a direct mapped first-level table are the same as the
aliasing rates in a address indexed second-level table. These are
given on the left side of Figure 5. These miss rates can be reduced
by using some degree of associativity. In Figure 10 we show the
misprediction rates that result for mpeg_play using 128-, 1024-
and 2048-entry four-way set associative tables in the row selec-
tion scheme. In these simulations, we assume that conflicts in the
first-level table are detected through tags, and the history reset so a
fixed mixture of zeros and ones. (We use the appropriate length
prefix of the pattern 0xC3FF, avoiding excessive aliasing for the
patterns of all taken or all not taken branches.) With this policy,
pollution in the first-level table raises the misprediction rates for
most table sizes and configurations more or less uniformly.

The results in Figure 10 show the penalty paid for a small first
level table. For a 128-entry first-level table the misprediction rate
for the configuration of a single column of 215 counters is 6.94%
above that for an infinite first-level table. For 1024 entries, this
penalty falls to 1.19% and, for 2048 entries, it falls to 0.44%. With
only 128 entries in the first table, one is better off relying, even for
large configurations, on address bits alone. Given a fixed resource
budget, one has to choose in a PAs scheme between throwing
additional resources into the first-level table or into the second
level table. It is notable that relatively small second-level tables
can achieve most of the accuracy possible with the scheme. A
1024-counter prediction table, for example, may well provide ade-
quate performance. Rather than adding counters to the second-
level table, it may be most cost effective to add additional entries
to the first-level table. For example, 65,536 bits can be used to
implement a table of 32,768 counters, or a table of 1024 counters
and enough history bits to keep 10 bits of history for 6348
branches. We have omitted here the cost of address tags for the
first-level table. In some designs it is possible to integrate the
branch history cache with a branch target buffer or with the
instruction cache and, thus, avoid having to implement additional
tag bits. )

Yeh and Patt [YehPatt91] first proposed the PAs organization,
and explored the importance of the size of the first-level table.
They simulated a 4096 counter PAg scheme with 256-entry, 512-
entry and unbounded first-level tables. Their results for gcc
emphasized the importance, for that benchmark, of a large first-
level table. In a later study [YehPatt93}, however, when investi-
gating alternative implementations with a large resource budget,
they kept the first-level table at a constant 1024-entry size, with 4-
way set associativity. They found that adding large amounts of
resources to the second-level predictor table gave almost no bene-
fit. In a later study, Calder and Grunwald[CalderGrunwald94]
compared the results for a 2048-entry and 4096-entry GAg
scheme with those for a 64-row, 16-column PAs scheme with a
512 entry 4-way set associative first-level table. They found, that
the GAg schemes gave better prediction accuracy, but failed to
note that additional resources, properly applied, would aid the PAs
scheme much more than the GAg schemes.

6 Conclusions

Table 3 lists, for each benchmark and for each of the schemes
considered, the best configuration for a range of predictor table
sizes, along with the corresponding misprediction rate. This table



First-level
Table Miss
Benchmark | Predictors Rate 512 Counters 4096 Counters 32768 Counters
espresso GAs — 26 x 23 (4,79%) 2% x 24 (3.99%) 211 x 24 (3.52%)
gshare —_ 28x 21 (4.83%) 28 x 24 (3.82%) 213 x 22 (3.33%)
PAs(inf) — 29 x 29 (14.61%) 212 x 20 (4.34%) 213 x 22 (4.06%)
PAs(1k) 0.01% 29 x 20 (4.62%) 212 ¢ 29 (4.35%) 213 x 22 (4.06%)
PAs(128) 0.44% 29x 20 (4.83%) 212 29 (4.57%) 213x22 (4.28%)
mpeg_play GAs — 20x 2% (10.61%) 25 x 25 (7.23%) 29 x 26 (4.95%)
gshare - 29 x 29 (10.61%) 28 x 24 (6.90%) 211 x 24 (4.58%)
PAs(inf) — 29x 20 (5.41%) 28 x 24 (4.84%) 20 x 26 (4.22%)
PAs(2k) 0.97% 29 x 20 (5.85%) 28 x 24 (5.27%) 29 x 26 (4.67%)
PAs(1k) 2.68% 29 x 20 (6.5%) 28 x 24 (5.92%) 20 x 26 (5.34%)
PAs(128) 17.9% 23 x 26 (11.53%) 2% x 29 (10.93%) 27 x 28 (10.53%)
real_gcc GAs - 20x 29 (14.45%) 2% x 29 (9.59%) 27 x 28 (6.82%)
gshare _ 20 x 29 (14.45%) 2% x 28 (9.52%) 26 x 29 (6.76%)
PAs(inf) — 29 x 20 (7.05%) 212 x 20 (6.5%) 215 x 20 (6.15%)
PAs(2k) 1.89% 2% 2° (8.05%) 212x 29 (7.51%) 215 x 20 (7.17%)
PAs(1K) 388% 2% 29 (9.00%) 212 x 20 (8.55%) 215 x 20 (8.23%)
PAs(128) 22.28% 22 x 27 (17.88%) 2% x 2 (16.78%) 25 x 210 (16.2%)

Table 3: Best configurations for various predictor table sizes for three benchmarks

points to several conclusions. Although it has been suggested that
global history schemes would be able to draw upon information
not available from self history, even for large tables, aliasing can
undercut this advantage, and PAs schemes can provide more accu-
rate predictions. The advantage of PAs is more pronounced for
smaller second-level tables, in which the aliasing rate for global
history schemes can be quite high. For smaller table sizes, the glo-
bal history schemes are, in fact, less effective than a conventional
table of address-indexed predictors. To be effective, however, PAs
schemes need sufficient resources in the first-level table. Colli-
sions in this first-level table tend to harm prediction rates almost
uniformly, without regard to the size or configuration of the sec-
ond-level table. Table 3 also points out that optimal configuration
for a particular scheme and table size will vary considerably with
the benchmarks chosen. In the presence of aliasing, global history
schemes will typically need more address bits to most effectively
predict larger programs. For larger tables, the gshare scheme
enjoys a slight advantage over GAs schemes. Self history
schemes, on the other hand, will typically perform slightly better
using more history bits, but for an actual implementation, the
misprediction advantage may be overshadowed by the additional
storage expense.

‘We have reported the results of extensive simulations of a vari-
ety of branch prediction approaches and configurations and have
shown that the accurate prediction of large programs depends pri-
marily upon the deployment of sufficient resources to keep track
of information regarding a large number of branches, whether
these resources are placed in a first-level or a second-level table.
The small-footprint SPECint92 benchmarks have encouraged the
idea that the resource requirements of global history schemes
might be limited, but this is not the case. Recent work has begun
to examine ways of combining schemes to provide more effective
branch prediction. The results presented here suggest that con-
trolling aliasing will be the key to improving prediction accuracy
and taking advantage of inter-branch correlations in global
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schemes. This is much the same conclusion reached by Young et
al. [YoungGloySmith95]. We have shown, however, that control-
ling aliasing in the first-level table of a PAs scheme is an alterna-
tive route to high prediction accuracy that may well prove more
cost effective.

It will be important to recognize the position of branch predic-
tion schemes under design within the larger space of possibilities,
lest resources be misapplied. In their widely-used textbook, Hen-
nessy and Patterson [HennessyPatterson95] make the statement,
regarding GAs, that “the attraction of this type of correlating
branch predictor is that it can yield higher prediction rates than the
two-bit scheme and requires only a trivial amount of hardware.”
We have shown the degree to which this attractive element is sub-
ject to subversion for large programs. Branch prediction results
require more careful interpretation, with the recognition that the
benefits of correlation can easily be drowned by aliasing.
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